
Self-Avoiding Walks over Adaptive Triangular Grids

Gerd tteber* Rupak Biswas t Guang R. Gao*

*CAPSL, University of Delaware, Newark, DE 19716; {heber,ggao}©capsl.udel.edu

tNASA Ames Research Center, Moffett Field, CA 94035; rbiswas©nas.nasa.gov

Abstract

In this paper, we present a new approach to constructing a "self-avoiding" walk through

a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling

curves which is based on a geometric embedding, our approach is combinatorial in the sense
that it uses the mesh connectivity only. We present an algorithm for constructing a sell

avoiding walk which can be applied to any unstructured triangular mesh. The complexity

of the algorithm is O(n -log(n)), where n is the number of triangles in the mesh. We show
that for hierarchical adaptive meshes, the algorithm can be easily paxallelized by taking

advantage of the regularity of the refinement rules. The proposed approach should be very
useful in the runtime partitioning and load balancing of adaptive unstructured grids.

1 Introduction

Advances in adaptive software and methodology notwithstanding, parallel computational strate-

gies will be an essential ingredient in solving complex, real-life problems. However, parallel

computers are easily programmed with regular data structures; so the development of eiticient

parallel adaptive algorithms for unstructured grids poses a serious challenge. An efficient pax-

allelization of these unstructured adaptive methods is rather difficult, primarily due to the load

imbalance created by the dynamically-changing nonuniform and irregular grid. Nonetheless,

it is generally believed that unstructured adaptive-grid techniques will constitute a significant

fraction of future high-performance supercomputing. Mesh adaption and dynamic load balanc-

ing must be accomplished rapidly and efficiently, so as not to cause a significant overhead to

the numerical simulation.

Serialization techniques play an important role in all parts of a Finite Element Method

(FEM) over adaptive unstructured grids. A numbering of the unknowns allows for a matrix-

vector notation of the underlying algebraic equations. Special numbering techniques (Cuthill-

McKee, frontal methods) have been developed to optimize memory usage and locality of the

algorithms. On the other hand, in many cases, runtime support for decomposing dynamic

adaptive grid hierarchies is based on a linear repTvsentation of the grid hierarchy [8] in the form

of a space-filling curve. Salmon et al. [10, 11] have demonstrated the successflfl application of

techniques based on space-filling curves to N-body simulations. Otlmr researchers [4, 6, 7, 8, 9]

have also shown how space-filling curves can be used for graph partitioning and similar graph-

related problems.

The general idea of a space-filling curve is a sort of a serialization (or linearization) of visiting

points in a higher-dimensional space. A standard method for the construction is to embed the

object of study into a regular environment (where the standard space-filling curves live). This

approach introduces a kind of an "aJ'tificial" structure in _he sense that the entire construction

depends on the embedding. 1 Ihlrthermore, this type of a linear representation forgets about

the combinatorial structure of the mesh which drives the formulation of operators between the

finite element spaces. The questions arises whether one could reduce the different requirements

for a serialization in an adaptive FEM over unstructured grids to a common denominator.

In this paper, we present a new approach to constructing a "self-avoiding" walk 2 through

a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling

curves which is based on a geometric embedding, our approach is combinatorial in the sense

that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding

walk which can be applied to any unstructured triangular mesh. The term unstructuTvd refers

to information that can hardly be compressed, and which does not contain any symmetry or

redundancy. At this level, any labeling or numbering of the mesh components is as good (or as

bad!) as any other scheme. However, the situation changes if the mesh adaption is done in a

hierarchical manner where we, based on a set of simple rules for coarsening and refinement, pay

particular attention to the triangulation of the initial mesh. In contrast with a general adaption

scheme that produces just another unstructured mesh, this strategy exploits tim structure of

the adaption hierarchy to simplify the labeling process. We would like to modify (or adapt) the

labeling only in regions where the mesh has been altered but not rebuild the entire indexing.

This idea has been extensively developed in [3].

Self-avoiding walks can be used to improve the efficiency of the respective algorithms, in

particular locality and load balancing. However, we need to search for some special classes

of self-avoiding walks that will facilitate runtime load balancing with good locality in terms

of memory access or communication. Since we are not interested in just any kind of walks,

we have to first tackle the question of the existence of walks with the desired properties. In

this paper, we give an existence proof which is constructive in nature so that it also provides

an algorithm for generating such walks. For the case of hierarchical adaptive rcfinement, the

proposed algorithm is easily amenable to parallelization. In the process of deriving the existence

of a particular class of walks, a natural mathematical framework emerges which, we believe,

can be easily adapted for other special classes of walks.

In Section 2, we define a certain class of walks whose existence for arbitrary unstructured

meshes we can prove (see Appendix A). In Section 3, we present an algorithm based on the

existence proof and show some sample results. The algorithm works for arbitrary unstructured

meshes; however, a parallelization is non-trivial and the walk has to be completely rebuilt after

mesh adaption. Furthermore, since we cannot make any regularity assumptions, the chances are

quite low that we could prove the existence of constrained (in the sense of boundary conditions)

walks. In Section 4, we briefly review hierarchical mesh adaption and a suitable indexing

scheme. We find the missing regularity that enables us to prove the existence of constrained

walks (see Appendix B) and to formulate a truly parallel algorithm for the construction of walks

which is well-behaved with respect to mesh adaption. Section 5 concludes the paper with some

perspectives.

It is similar to describing metric properties of a curved surface i1_terms of a parmnetrization in the enveloping
(uncurved) three space instead of doing inner geometry, i.e., geometry ba_ed only on lneasurements (ut the surface
itself. The only inner properties of a mesh are its decomposition into cells of different dimensions m_d a face
relation describing how the cells are ghmd together.

eThis term should l)e familiar to people working ia Monte Carlo method,_; however, it is beyond the scope of
this paper to address the similarities and differences in det_fil.

2 Definitions

Consider an arbitrary two-dimensional triangular mesh a 9.R and denote tile underlying set of

triaalgles by H. Let #H denote the cardin'ality of H.

Definition 2.1. A mapping

w: {1,... ,#H} --_ _r (1)

is called a self-avoiding walk _=_def W is a bijection and

Vi _ {1,... , #H - 1} w(i) and w(i + l) share an edge or a vertex. (2)

Remark. The previous definition states that a walk visits each triangle exactly once and

that jumps (i.e., two consecutive triangles in the walk that have an empty intersection) are

forbidden. The reader may wonder why our requirements for a walk (cf. Eq. (2)) are rather

weak. As simple examples show, the condition that triangles following one another must shame

an edge, is too strong. Generally, self-avoiding walks do not exist under this assumption (cf.

Fig. 1 for a trivial example).

Figure 1: A simple counterexample (look at the dual graph!).

In the following, we consider a special class of self-avoiding walks.

Definition 2.2. A sel/-avoiding walk is called proper _::=:_def

vie {2,..., #H - 1} _(i - _)n _o(i)# _(i) n _o(i+ t). (3)

Remark. The previous definition states that for three triangles following one another in a

proper self-avoiding walk, "jumping" twice over the same vertex is forbidden (of. Fig. 2).

Figure 2: A forbidden jump.

3By a mesh we understaald a simplicial complex coming from the simplicial decompt_ition of a era, netted 2D

manifold (with or without a b_mndary).

3 Existence

Proposition 3.1. There exists a proper self-avoiding walk for an arbihury triangular mesh
9_ . []

For a proof of Proposition 3.1, we refer the reader to Appendix A. The proof is inductive

over the number of triangles in the mesh and extends an existing proper self-avoiding walk over

to a larger mesh. The proof provides a set of elementary rules which can be use(! to formulate

an algorithm for constructing proper self-avoiding walks over arbitrary unstructured meshes.

The value of such rules becomes apparent if practical questions such as tile proper extension of

existing "incomplete" walks are addressed (and the difficulty of the proof is in this part).

3.1 The Basic Algorithm

The proof of Proposition 3.1 provides an algorithm for the construction of proper self-avoiding

walks: starting from an arbitrary triangle of 9J_, choose new triaagles sharing an edge with the

current "subcomplex" and extend the existing proper self-avoiding walk over the new triangle.

This algorithm can be represented recursively. Figure 3 shows the pseudo-code for the basic

function, called EXTEND_WALK. The algorithm begins with the selection of an arbitrary

triangle from the mesh. After removing this triangle from the mesh and inserting it (as the first

triangle) into the walk, the function EXTEND_WALK is called with P being the position of

the first triangle in the walk. 4

EXTEND_WALK(M, W, P)
mesh M, walk W, position of a triangle in walk P;
{

while (triangle T remains in M sharing an edge with the triangle at P) {

insert T into W according to the rules discussed in the proof of Proposition 3.1;
remove T from M;
set new position Q to position of T in W;
EXTEND_WALK(M, W, Q);

}

Figure 3: The basic function.

The complexity of this algorithm is O (n. log(n)), where n is the number of triangles in the

mesh. This complexity is obtained as follows. Since we organize our triangles in a red-black

tree, a search in this structure is of complexity O(log(n)). The edge-triangle incidence relation

can also be organized in a red-black tree. Since we have to perform this searctl for each triangle

in our mesh, the overall complexity of our algorithm is O(n. log(n)).

Given the existence of proper self-avoiding walks, other approaches might be favorable. For

example, self-avoiding walks have a long tradition in the application of Monte Carlo methods

to study long-chain polymer molecules. However, this is not the focus of this paper.

4By a position in a walk, we metal a reference to a trimlgle in the walk rather than an inde×. We need a data

structure with fa_t insertion; therefore, an array is not appropriate. In ollr C_-+ implementation_ a p(_ition is

given 1)y list<Triangle>: :iterator.

3.2 Results

We implemented a sequential algorithm for the generation of a proper self-avoiding walk using

the set and map containers from the C++ Standard Template Library which is part of the

ANSI-C++ standard. Both containers are implemented with red-black trees. 5 The results

presented in Tables 1 and 2 were obtained for some sample meshes on a 110 MHz microSPARC

II using GNU's g++ compiler (version 2.7.2.3) with the -0 flag. Note that tile times in the

tables below include the setup time for tile mesh and tile edge-triangle incidence structure.

tmangles edges time (s)

2048 3136 0.30

4096 6240 0.57

8192 12416 1.31

16384 24768 2.71

32768 49408 5.54

65536 98688 11.82

131072 197120 24.07

triangles edges

65536 131073

65536 114690

65 a6 1o65o0
65536 102408

65536 100368

65536 99360

65536 98880

65536 98688

ratio time (s)
0.500 12.85

0.571 12.27

0.615 12.21

0.640 12.15

0.653 12.13

0.660 12.02

0.663 11.99

0.664 11.82

Table 1: Runtimes for various mesh sizes. Table 2: Runtinms for various triangle/edge ratios.

The results in Table 1 indicate the dependence of the runtime on the mm]ber of triangles

(or edges). According to our description of the algorithm, the runtinm may also depend on

the triangle/edge ratio. The results in Table 2 explore this possibility; however, the numbers

clearly show that tim dependence of the execution time on the triangle/edge ratio is negligible

and confirm our complexity estimate for the whole algorithm.

4 Optimization and Parallelization

A standard parallelization of the deterministic algorithm would be based on the observation

that if the proper extensions of a self-avoiding walk for two triangles do not interfere with

each other, then they can be done in parallel. Such an approach is feasible in dealing with

single meshes, when no additional structural information is available, or with families of meshes

without any hierarchical structure, although this procedure might be computationaJly expensive
in connection with adaption.

For a extended discussion of unstructured mesh adaption, we refer tlm reader to [1, 5]. In

the following, we restrict ourselves to tim case of hierarchical refinement and apply the standard

1:4 (red) and 1:2 (green) subdivision rules for triangles (cf. Fig. 4).

A couple of additional rules are then applied, primarily to assure that the quality of the

adapted mesh does not deteriorate drastically with repeated refinement:

1. All triangles with exactly two bisected edges have their third edge also bisected. Tiros, such

triangles are isotropically refined.

2. A green triangle cannot be filrther subdivided. Instead, the previous subdivision is discarded

and isotropic subdivision is at)plied to the (red) ancestor triangle.

One migh also thiak about aa_ implementatioa usi,lg h;_sh tables.

Figure 4: The left picture shows the isotropic subdivision of a triangle. The right one gives an

example of anisotropic subdivision.

For hierarchical meshes a completely different approach to constructing proper self-avoiding

walks is possible: the general algorithm has to be applied only once to the initial mesh and this

"coarse" self-avoiding walk can be _vused after adaption. On the local level, we are going to

exploit the reg_llarity of the refinement rules. This leads us to the consideration of constrained

self-avoiding walks. Local regularity allows us to prove the existence of solutions for the un-

derlying "boundary value problems". (In that sense, the algorithm derived from the proof of

Proposition 3.1 guarantees the solvability of "initial value problems" only.) In the next section,

we sketch a technique which allows the efficient handling of constraints.

4.1 An Indexing Technique for Hierarchical Meshes

It is the task of an index scheme to properly name or label the various objects (vertices, edges,

triangles) of a mesh. We prefer the term index scheme instead of numbering to stress that the

use of natural numbers as indices is not sufficient to nmet the naming requirements of the FE

objects on parallel architectures. For a detailed discussion, refer to [2, 3].

Our index scheme is a combination of coarse and local schemes. The coarse scheme labels

the objects of the coarse mesh in such a way that the incidence relations can be easily derived

fi'om the labels. Tim vertices axe enumerated starting from 1. For the exa_nple in Fig. 5, the

4 6 7

Figure 5: An L-shaped domain and its coarse triangulation.

set of vertices for the coarse triangulation consists of the following numbers:

vertices = {1, 2, 3, 4, 5, 6, 7, 8}.

The edges of tile coarse triangulation are indexed by ordered pairs of integers that correspond

to the endpoints of the edges. The ordering is chosen so t,h_ the first index is less than the

secondone.For theexamplein Fig. 5, theset of coarseedgesconsistsof tile followingpairs:

edges= {(1,2), (1,3), (1,5), (2,5), (3,4), (3,5), (3,6),
(4,6), (5,6), (5,7), (5,8), (6,7), (7,8)}.

The sameprinciplesareappliedto indexthe coarse triangles. They are denoted by the triple

consisting of their vertex numbers in ascending order. Thus, the set of coarse triangles reads:

triangles= {(1,2,5), (1,3,5), (3,4,6), (3,5,6), (5,6,7), (5,7,8)}.

Note that this index scheme can be applied to elements with curved boundaries ms well.

The ideal model for local considerations is given by the two-dimensional standard simplex

cr2 (cf. Fig. 6):

o_ := {(xl,x2,x3) e _3 txl +x2 +_3 = 1}. (4)

z

1/2)

,0} Y

0/2,1,'2, O)

/ (1,o,o)
p'

Figure 6: Tile two-dimensional standard simplex and some points on it.

The local scheme exploits the regularity (and the finiteness) of the refinement rules to

produce names for the objects at subsequent refinement levels [3]. We use (scaled) natural

coordinates as indices in the local scheme. Again, this is done in a way such that incidence

relations and the refinement level are encoded in the indices of the objects (cf. Fig. 7). For

example, the set of vertices at level k in the local model is given by:

vk(_2) := {(a,b,c) eN _ I _+_+c= 2k}. (5)

Obviously, there holds v E Vk(cr 2) ¢=* 2v C Vk+l(c_ 2) and therefore we have the following

embedding Vk(a 2) C Vk+l(a2). This shows that we can easily move between refinement levels

by rescaling.

Denote by Ek(a 2) ttm set of edges at level k. We choose the integer triple corresponding to

the midpoint of an edge as its index. Hence Ek(c_ 2) _--Vk+l(a 2) -- Vk(cl 2) and

k

R(k): R(k)(_2):= U E_(_2)_ E(k)-_ V_+/(_2)- V°(_2)"
i:0

(6)

(0,0,1) (0,0,2)

(12,0) (0,1,0) (2,0,0) (1,1,0) (0,2,0)

Figure 7: Examples of the local index scheme for triangular elements. Tile vertices and triangles

are denoted by integer triples (triangles by bold face).

Denote by Tk(a 2) the set of triangles on level k (red and green) and let

k

LJ
i=0

(7)

We choose the integer triples corresponding to the barycenter of a triangle as its index.

The coarse and local schemes are combined by taking the union of the Cartesian products

of the coarse mesh objects with their corresponding local schemes. Ambiguities are resolved by

using a normal form of tile index. The key features of such a scheme are:

• Each object is assigned a global name that is independent of any architectural considerations

or implementation choices.

• Combinatorial information is translated into simple arithmetic.

• It is well-behaved under (adaptive) refinement. No artificiM synchronization/serialization is
introduced.

• It can be extended (with appropriate modifications) to three dimensions [3].

4.2 Constrained Self-Avoiding Walks

We call a subset T C T(k)(o "2) a local refinement of a 2 if it can be obtained by applying the

refinement rules described in section 4. 6 Tim _vfiuement level of a coarse triangle is defined

to be zero. For an arbitrary triangle, the refinement level is defined as the successor of the

refinement level of the parent t_angle (the triangle it was created from by subdivision). The

refinement level of a triangulation is defined to be maximum of the refinement levels of its

trimlgles [3]. We denote the lew_l of a triangulation 7' by l(T).

The scheme developed in the previous section allows us, for the case of hierarchical re-

finement, to decompose our considerations into global and local cases. Here "global" means

"related to the initial (coarse) mesh", while "local" means "restricted to a triangle of the coarse

mesh". Given a walk over and a local refinement of the coarse mesh one might ask whether it is

possible to extend the walk over the triangles of the local refinement. In addition, we would like

to decouple the considerations for different coarse triangles. This leads naturally to what we

call constrained self-avoiding walks: a walk over the initial mesh leaves a trace or footprint on

6Since we allow coarsening, the term "local refinement" is somewhat misleading. Ilowever, aaly local refinement

obtained by a combination of coal-sening and relhtement can be ol)tain('d I)y refilmment only, discarding the history

of the adaption. This a.ssumes that com'seniug (lid not oc(:ur beyond the initial mesh,

each coarse triangle which is then translated into a "boundary va.lue problem" for tim extension

of the self-avoiding walk. The regularity of the local 1)icture allows us to prove tim existence of

constrained proper self-avoiding walks.

Definition 4.1. A pair (¢,,fl) G Vl(a 2) × Vl(a 2) is called constraint on a 2 ¢==_def a ¢ _.

Remark: The previous definition states that we forbid constraints requiring that a walk enters

and leaves a triangle through the santo edge or the same vertex. (The latter would imply

a forbidden jump in the "coarse" walk.) In the definition, we implicitly used the embedding

Vo(a 2) C V1 (o "2) and the isomorphism Eo(a 2) _ V1 (o "2) - V0(a2). Figure 8 shows a few examples

of constraints. The entry constraints axe denoted with bullets and the exit constraints with filled

triangles.

Figure 8: A few examples for constraints.

Definition 4.2. Let c = (c_,/3) be a constraint on _r2 and T C T(k)(cr 2) a local refinement of

a 2. A proper self-avoiding walk w : {1,... , #T} -+ T is called compatible with c _::=_def

c and c (8)

Lemma 4.1. Let c = (o_,f_) be an arbitrary constraint on a 2. Let R,G C Tl(a 2) be a red

and green triangle, respectively. There exist proper self-avoiding walks on R and G which are

compatible with c. []

Remark: Lemma 4.1 can be easily proved and is valid not only for constraints on a 2 and

R, G c Tt (a2), but also for constraints on red and green triangles at any level, since the proof

of Lemma 4.1 depends only on the fact whether a triangle is red or green.

Obviously, the formulation of constraints is not restricted to coarse triangles, i.e., triangles

at level zero. A slightly more general definition than definition 4.1 goes as follows:

Definition 4.3. Let k E N,k > O. A pair (a,/_) E Vk(a 2) × Vk(a 2) is called constraint on

Proposition 4.1. Let c = ((_,fl) be an arbitrary const,uint on (72 and T C T(k)(a 2) be a local

refinement of a 2. There exists a proper self-avoiding walk WT, c on T which is compatible with

c. []

Given a constraint on a 2 and a local refinement T C T (k) (o2), Proposition 4.1 guarantees

the existence of a compatible proper self-avoiding walk. The proof in Appendix B also provides

an algorithm for constructing the solution of this "boundary v'_lue problem". The synthesis

of Propositions 3.1 and 4.1 provides a simple parallel aJgorithm which requires changing an

existing proper self-avoiding walk only where the mesh has been adapted (coarsened/refined).

If the mesh adaption affected only levels higher than k, the walk has to be modified only over

triangles whose level is greater than k. Note th;_t the local adaptions of the walk are decoupled

from one another and c_n be done independently; thus, this is a truly l)arallel algorithm.

5 Conclusions and Perspectives

In this paper, we have developed a theoretical basis for the study of self-avoiding walks over

two-dinmnsional adaptive unstructured grids. We described an O(n. log(n)) algorithm for the

construction of proper self-avoiding walks over arbitrary unstructured meshes and reported

results of a sequential implementation. We discussed parallelization issues and suggested a

significant improvement for hierarchical adaptive unstructured grids. For this situation, we

have also proved the existence of constrained proper self-avoiding walks.

The algorithms presented allow a straightforward generalization to tetrahedral meshes; how-

ever, there is some flexibility because of additional freedom in three-space. The application to

load balancing is likewise rather straightforward. However, modifications to improve locality in

the sense of a generalized frontal method requires a more detailed study of the relationships

between (more specialized) constraints on walks and cache memory behavior.

References

[1] R. Biswas, R.C. Strawn: A new procedure for dynamic adaption of three-dimensional

unstructured grids, Appl. Numer. Math., 13(6), 1994, pp. 437-452.

[2] J. Gerlach: Application of natural indexing to adaptive nmltilevel methods for linear tri-

angular elements, RWCP Tech. Rep., TR 97-010, Tsukuba Research Center, Japan, 1997.

http ://www. rwcp. or. jp/peop].e/j ens/pub].icat ions/Tg-97-010, ps. gz

[3] J. Gerlach, G. Heber: Fundamentals of natural indexing for simplex finite elenmnts in two
and three dimensions, RWCP Tech. Rep., TR 97-008, Tsukuba Research Center, Japan,

1997. http ://w_w. rwcp. or. j p/peop].e/j ens/pub'l icat ions/TR-97-008, ps. gz

[4] M. Griebel, G. Zumbusch: Hash-storage techniques for adaptive multilevel solvers and

their domain decomposition parallelization, AMS Contemporary Math. Series, 218, 1998,

pp. 279-286.

[5] G. Heber, R. Biswas, G.R. Gao: Self-avoiding walks over two-dimensional adaptive un-

structured grids, CAPSL Tech. Memo, TM 21, University of Delaware, Newark, 1998.

[6] X. Liu, G. Schrack: Encoding and decoding the Hilbert order, Software - Prac. and Exp.,

26(12), 1996, pp. 1335-1346.

[7] C.-W. Ou, S. Ranka, G. Fox: Fast and parallel mapping algorithms for irregular problems,

J. of Supercomputing, 10(2), 1995, pp. 119 140.

[8] M. Parashar, J.C. Browne: On partitioning dynamic adaptive grid hierarchies, 29th Hawaii

Intl. Conf. on System Sciences, 1996, pp. 604-613.

[9] J.R. Pilking_on, S.B. Baden: Dynamic partitioning of non-uniform structured workloads

with spacefilling curves, IEEE]}'ans. on Par. and Dist. Sys., 7(3), 1996, pp. 288 -300.

[10] J. Salmon, M.S. Warren, G.S. Winckelmans: Fast parallel tree codes for gravitational and

fluid dynamical N-body problems, Intl..1. ofSupercomputer Appl., 8(2), 1994, pp. 129 142.

[11] J. Salmon, M.S. Warren: Parallel, out-of-core methods for fast evalnation of long-range

interacti(ms, 8th SIAM Conf. on Parallel P_vce.s'sing for Scientific Computing, 1997.

10

A Proof of Proposition 3.1

Before we start with the proof of Proposition 3. l, we remind tile reader of two technical results.

The respective proofs axe not very difficult, but beyond the scope of tiffs paper.

Lemma A.1. Let t,t:,t2,t3 be triangles in a mesh _J_ and

ViE{I,2,3} tilt. (9)

Then either

t: n t2 n t3 = 0 (1o)

07" 9_ is tetrahedral (cf. Fig. 9). []

(Note that if two triangles in a mesh share two vertices they must share the corresponding

edge.)

Figure 9: A tetrahedrM mesh.

Lemma A.2. Let 9J[be a mesh. There exists a triangle 7 in _Ot such that 9Jr - % the complex

obtained by 7,emoving "z .from YJt, is still a mesh. []

We use the following notation. If two triangles t:,t2 share an edge, we write tl I t2. Let w

be a self-avoiding walk. If w(i) I w(i + 1), we will write w(i) _- w(i + 1) indicating that w enters

w(i + 1) from w(i) over an edge. If w(i) _ w(i 4- 1), we write w(i) f_ w(i + 1) indicating that w

jumps into w(i + 1) from w(i) over a vertex.

Proof of Proposition 3.1: We prove Proposi_ioz_ 3.1 by induction over _he tmmber of tri_-

gles.

Assume that there exist proper self-avoiding walks for meshes with n triangles. Let 9_rt be

a mesh with n + 1 triangles.

Let T be a triangle in _ such that gY¢- _-, the mesh consisting of all tim triangles it, 9Jr

except _-, is a mesh (see Lemma A.2). Mesh 9Yt- T has n triangles and hence, by our induction

assumption, there exists a proper self-avoiding walk w_._ _-. We show that w__ _- can be extended

to a proper self-avoiding walk w,_ for _. We call this w_jt a proper extension of w_n-_-.

Let t be an triangle of _)7 - v sharing an edge with T (i.e. t I 7 holds). For an appropriate

i G {1,... , n}, there holds

t = (l:)

The (liscussion naturally can be split up into four cascs, depending on whether ab_ _ enters

t througil an cdge or a vertex and leaves through an edge or a w',rtex, resl)ectively.

11

Weomit the subscript9_t- v fi'om w in the following fi)r the sake of clarity. If we do not

know whether the transition from w(i) to w(i + 1) goes over an edge or a. vextex, we write

_0(i) -+ _0(i+ 1).
In tile figures below, parts of w_jt r are drawn as solid lines whereas the modifications leading

to wgn are drawn as dashed lines. Triangles are indexed by their position in the walk (e.g. w(i)

is denoted by i).

CaseI: Iw(i-1) l-w(i)t-w(i+l)]

Figure 10 illustrates the modifications necessary if w___f enters and leaves t through an

edge.

," -A_!:iiiiiiiiiiiiiiiiii!iiiiii!J \
-, iii!iiiiiiiii}iiiiiii;

r <i_ii_!ii:

(a) (b) (c)

Figure 10: Existing walk enters the triangle adjacent to r through an edge and leaves it through

another edge.

• If w(i - 1) f4 r ¢ w(i - 2) rl w(i - 1), then w(i - 1) -+ r _- w(i) is a proper extension of w

(cf. Fig. 10(a)).

• Ifw(i-1) nr=w(i-2)nw(i-1),thenw(i-2)_w(i-1).

- If w(i + 1) N r ¢ w(i + 1) N w(i + 2), then w(i) _- r -+ w(i + 1) is a proper extension

of w (cf. Fig. lO(b)).

- If w(i + 1) N r = w(i + 1) N w(i + 2), the,, w(i + 1) _-_ w(i + 2).

• If w(i - 1) rqw(i + 1) J: co(i + 1) nca(i + 2), then ca(i - 2) -+ r F- oa(i) _- w(i - 1) -+

w(i + 1) is a proper extension of w (cf. Fig. 10(c)).

• Let w(i - 1) n w(i + 1) = w(i + 1) 1"4w(i + 2). According to Lemma A.1, either

9J_ is tetrahedral or w(i - 1) Q w(i + 1) I-I -r = 0. If 93I is tetrahedral, there is

nothing to prove. For the other case, we have 0 = oa(i - 1) Q w(i + 1) fl r =

c0(i+ l) n_0(i + 2) n r = c0(i+ 1) n ¢ = _(i + 1)nc0(i + 2). This is a contradiction

with our assumption w(i + 1) _ w(i + 2) which means w(i + i) C-Iw(i + 2) J: 0.

The.refore, if g.R is not tetrahedral, the case co(i- I) Nw(i + 1) = c0(i + 1) Nw(i + 2)

is not possible. 7

YOhviously, there are proi)er self-avoiding walks for tetrahedral meshes. Note that a tetrahedral mesh cannot

be a proper submesh of a larger 2D mesh which is a maaifold a.s a tol)ological space.

[2

Case n: l)}
Figure 11 illustrates the modifications necessary if w_j___ enters t through an edge arid leaves

it through a vertex.

\ _ 1 ," "_iiiiiii:i::i:iii::i:ii_i_

i+l

i-2

_-1 _ ::_:i::i?.ilili::::iiii_i::ii::?

(a) (b) (c)

Figure 11: Existing walk enters the triangle adjacent to r through an edge and leaves it through
a vertex.

• If w(i) n w(i + 1) c w(i) 71r, then w(i) k r --+ w(i + 1) is a proper extension of w (cf.

Fig. ll(a)).

• Suppose w(i) n w(i + 1) q_w(i) Q r. (Note that _(i) N w(i + 1) definitely consists of a single

vertex!)

- If w(i - 1) 71r _ w(i - 2) Q w(i - 1), then w(i - 1) --+ 7 k- w(i) is a proper extension

of w (cf. Fig. ll(b)).

- Ifw(i- 1) 71r = w(i-2) fflw(i- 1), then w(i-2) r_ co(i- 1). In that case,

w(i - 2) _ r k- w(i) k- co(i - 1) + w(i + 1) is a proper extension of w (ef. Fig. ll(c)).

Case III: [w(i - 1) c'. _(i) t- w(i + 1)[

Figure 12 illustrates the modifications necessary if wojt-r enters t through a vertex and

leaves it through an edge.

xN ,i-! /

:_::;iiiii;iiiii;ii;ii:ii_i;iii?

(a)

::

:' ii{iiiii!iiiiiiiii!iiiiiii iiii?

(b)

===

' iiii!iiiiiiiii!iiii{iiiiii ii!ii?

ps

(c)

Figure 12: Existing walk enters the triangle adjacent to r through a vertex and leaves it through

an edge.

13

• If _0(i - 1) n ca(i) c .4i) n _, then _0(i - 1) -_ r e ca(i) is a proper extension of w (a.
Fig. 12(3)).

• Suppose co(i - l) N ca(i) _ ca(i) n "r.

- If w(i + 1) N _- _ ca(i + 1) N w(i + 2), then w(i) k- _ -+ w(i + 1) is a proper extension

of ca (cf.Fig. 12(b)).

- Ifw(i+ 1) n_" = ca(i+ 1) aw(i+2), then w(i+ 1) f_ w(i+2). In that case,

w(i - 1) --+ ca(i + l) k w(i) t- T --+ w(i + 2) is a proper extension of w (cf. Fig. 12(c)).

CaseIV: lea(i- + 1)]
Figure 13 illustrates the modifications necessary if w_)_-T enters and leaves t through a

vertex.

:_i_iiiiii)iiiiiiiiiiii!iiiiiiiiii?

::ii;iiiii;!iiiiiiiiii;iiiii_;i;!i;:¸

(a)

i-] _ ::i:_:i_ i+1

(b)

Figure 13: Existing walk enters the triangle adjacent to _- through a vertex and leaves it through

another vertex.

• If ca(i - 1) N w(i) C w(i) N % then ca(i - 1) --4 "r t- w(i) is a proper extension of w (cf.

Fig, 13(a)).

• If ¢a(i - 1) n ca(i) _ ca(i) n T, then _z(i) _- 7 _ ca(i + 1) is a proper extension of ca (cf.

Fig. 13(b)).

Since we have been at)le to properly extend w_--r in all cases, our proposition is proved. []

B Proof of Proposition 4.1

Proof: We prove Proposition 4.1 by induction over the level l(T) of T. Lemma 4.1 is the

stm'ting point for our induction (l(T) = 1).

Assume now that l(T) = n + 1. Let 7 '_ = T- (T N Tn+I (a2)). :/'_ is a local refinement of a 2

and l(T') = n. This technique is known as hierarchical coarsening [2] (cf. Fig. 14).

By our induction assumption, there exists a proper self-avoiding walk wr,,c which is com-

patible with c. We show that there is a proper extension caT,c of car',c.

T can be obtained from T t by local refinement. Let r be a triangle of T' which nmst be

subdivided (red or green) in order to obtain T. WT,,c indaces a constraint on the children of -r

or, in other words, the constraint on r is propagated to _-'s c.hildren by caT',c- This situation is

illustrated in Fig. 15. Figure 15(a) shows a local relinement T and the given constraint ((_, fl).

ld

Figure 14: Four steps of hierarchical coarsening.

Figure 15(b) shows one step of hierarchical coarsening where we already have a proper self-

avoiding walk WW,,c. This self-avoiding walk induces constraints on the higher-level triangles as

shown in Fig. 15(c)).

(a)

I

(b) (c)

Figure 15: Two steps of constraint propagation.

Since _- will be refined red or green, we can apply bemma 4.1 (and the remark thereafter)

to properly extend uJ,lc,,c over the children of T.

If we apply this procedure to all triangles t E C/"twhich must be subdivided to get to T, we

obtain u,_,c.

This proves our proposition. []

Figure 16 shows an example for the correct extension of a proper self-avoiding walk to a

higher level of refinement. Figure 16(a) shows the mechanical way dictated by the constraints.

This walk can often be improved in the sense that certain jumps over vertices can be replaced

by jumps over edges since tlm triangles under consideration share an edge (cf. Fig. 16(b)).

(a) (b)

Figure 16: Extension over _ higher level of refinement,.

15

